a2 United States Patent

Colenbrander

US009332216B2

(10) Patent No.: US 9,332,216 B2
(45) Date of Patent: May 3, 2016

(54) VIDEO FRAME RATE COMPENSATION
THROUGH ADJUSTMENT OF VERTICAL

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

BLANKING

Applicant: Sony Computer Entertainment
America LLC, San Mateo, CA (US)

Inventor: Roelof Roderick Colenbrander, Costa

Mesa, CA (US)

Assignee: Sony Computer Entertainment
America, LL.C, San Mateo, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 211 days.

Appl. No.: 14/280,502

Filed: May 16, 2014

Prior Publication Data

US 2015/0264298 A1l Sep. 17, 2015

Related U.S. Application Data
Provisional application No. 61/951,729, filed on Mar.

12, 2014.
Int. Cl.

GO6T 9/00 (2006.01)

GO6T 1/00 (2006.01)

GO6F 15/00 (2006.01)

HO4N 7/01 (2006.01)

GO6T 1/60 (2006.01)

HO4N 5/04 (2006.01)

GO6F 3/14 (2006.01)

GO9G 5/395 (2006.01)

U.S. CL

CPC oo, HO4N 7/013 (2013.01); GO6F 3/14

(2013.01); GO6T 1/60 (2013.01); HO4N 5/04
(2013.01); GO6F 3/1423 (2013.01); GO9G
5/395 (2013.01); GO9G 2340/02 (2013.01):
G09G 2340/0435 (2013.01); GO9G 2350/00

(2013.01); GO9G 2360/08 (2013.01); GO9G
2360/12 (2013.01); GO9G 2370/022 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0278230 Al* 11/2010 Maclnnis HO4N 19/172
375/240.02

2012/0206461 Al* 82012 Wyattccoovvrnnn. GO09G 5/003
345/501

2014/0101342 Al 4/2014 Colenbrander
OTHER PUBLICATIONS

Co-Pending U.S Appl. No. 14/134,213, to Roelof Roderick
Colenbrander, filed Dec. 19, 2013.
Co-Pending U.S Appl. No. 14/134,374, to Roelof Roderick
Colenbrander, filed Dec. 19, 2013.
Co-Pending U.S Appl. No. 61/951,729 to Roelof Roderick
Colenbrander, filed Mar. 12, 2014,

* cited by examiner

Primary Examiner — Jacinta M Crawford
(74) Attorney, Agent, or Firm — Joshua D. Isenberg; JDI
Patent

(57) ABSTRACT

Aspects of the present disclosure relate to systems and meth-
ods configured to adjust the timing of frame scanout in
response to fluctuations in the source frame rate of graphics
content rendered by a processing unit. In certain implemen-
tations, a vertical blanking interval generated during scanout
of frames from a frame buffer may be adjusted in response to
detected changes in the frame rate at which the source content
is generated. In certain implementations, rendered graphics
may be streamed over a network for display in real-time on a
remote device, and the scanout out of frames may be adjusted
in order to better match the rate of compression and streaming
to a variable frame rate of the source content.

29 Claims, 8 Drawing Sheets

104
Rendering

106
Frame Rate

I
108 |
Frame |
Buffer |

14
Scanout

16
Display
Device

122
Refresh Rate

U.S. Patent May 3, 2016 Sheet 1 of 8 US 9,332,216 B2
102
104 Source 106
Rendering Frames Frame Rate
Z
L
d----‘L---‘ po—————— ~.
108 | v { 110 Front }
Frame i : i uffer i
Buffer | 112 Back } Lis/102 / |
\ Buffer j A\ T
118
114 Output
Scanout Frames
L
L
(
118
116 122
Display Output Refresh Rat
resh Rate
Device . Frames
L
\

FIG. 1

U.S. Patent May 3, 2016 Sheet 2 of 8 US 9,332,216 B2

< HTOTAL
<4— HDISPLAY (width)

v

v

+ ‘
T c
— O
= £F
s S N
_ B 8%
€5 & <= 201 Visible pixels 2=,
q,_', c @ : w| € »
£ & 3 g5z
44 - o
>E = 2
- 9 >
T4
l 203 Invisible Pixels }
SR
207 Vertical 211 Horizontal
Synchronization Blanking Interval .
Pulse 209 Vertical

Blanking Interval

FIG. 2

U.S. Patent May 3, 2016 Sheet 3 of 8 US 9,332,216 B2
302
304 Source 306
Rendering Frames Frame Rate
7
L
d—__-‘L_-_‘ pm——————— ~
{ %y {310 Front
308 : |~ Buffer |
Frame | i I
Buffer | 312 Back | —:—@ i
| Buffer ; | i
TR —— 'l ___ _____ 4’
318
= 320
314 Output VBI
Scanout Frames
L
I |
=
324 318
Frame Output a
Capture Frames
II I
v
302
326 Source 328
Encoding Frames Compression
4 Rate

Compressed
Frames

FIG. 3

U.S. Patent

May 3, 2016

(433 Application)

Sheet 4 of 8

431 Rendering a plurality of
source frames in sequence to
a frame buffer with a
processing unit

l

440 Detecting changes in the
frame rate at which the frame
images are drawn

432 Scanning out a plurality of
output frames in sequence
from the frame buffer with a

scanout unit

l

l

442 Adjusting vertical blanking
interval in response to
fluctuations in the frame rate

434 Capturing the plurality of
source frames

l

436 Compressing the plurality
of source frames with an
encoder

l

438 Sending the compressed
frames over a network

FIG. 4

US 9,332,216 B2

U.S. Patent

May 3, 2016

550 Graphics Source
(Terminal System)

(3,
o

CPU

62 GPU

564 Memory Unit

566 Graphics Driver

68 Frame Buffer

570 Scanout Unit

Sheet 5 of 8 US 9,332,216 B2
500 552 Streaming Server
(Host System)
572 Processor Unit
374 Memory Unit
576 Frame Capture Unit
554 578 Video Encoder
Display
Interface 580 Streaming Unit

558 Client Device

A

86 Processor Unit

582 Video Decoder

588 Memory Unit

584 Display Device

FIG. 5

US 9,332,216 B2

Sheet 6 of 8

May 3, 2016

U.S. Patent

209
walsiAg

abeloig

V9 'Ol

A

ainyde) oapIA

ol

A

ooy,
o e R e el R R]

ATAYaY] FAYAYAY,
%Awov walsAg Bunesad %
%}m}m}m}m}u«ﬁﬂu«ﬁaﬁmﬁﬁm}m}m}m}m«ﬁ«(«(a(a(

NY

Liewsuel L AV 959

1N INQ ueds €69

|||||||||||||||||||| e

e A et [o] JSOH ofe 103 SSe]

e e m— T e el falvlonlete,

P sNdeID 280 D e s
A B,

(wo)sAg [eulwla]) 924N0G OBPIA
z19

US 9,332,216 B2

Sheet 7 of 8

May 3, 2016

U.S. Patent

g9 "Old

abelo)g

—

— AN —>

A 4

(s)uod sBeio)g ssely
¥io

Janilgoay ANV

4

Y

ov9

Aowaw walshg

EE%EE@EM_

//////////////////

(shun o_mo._ palesipaq

N

psed aimyde) 029

ool

TR AV avavavavy

3&&&&&&&
T

Yaravaviavavev.dutinbibibintl

Ao

e (ydu) s

ST Ay,
2 JoAlQ oAuQ Aowe £

i i

[e,

ndo
709
JoAUQ JoUSRYIT +]
% 0B)S sHoMIBN B4

(Jlaniag Bulwes)s) EE@Am 1SOH Z09

Z19
aoaInosg
o3pIA
ol

US 9,332,216 B2

Sheet 8 of 8

May 3, 2016

U.S. Patent

[4:7]
sulbug nauj aorpSU|
vING dnusyy| 1soH
191 (72 voL
58900y AIOWSIA 99G
[w] [s]
N
(s)sn1909y (s)aumiden (s)Joyj04u0)
NN 1> NV OIld9
— —_) A pid
0€L 811 |_ _| 28l
[0 B
|_ 108UU02IBIU| _
W] diyo-uo
- 18]
(s)ajjonuo) (47} < _ |_
a01ne(Ja|j01u0)
ebeioig abeio)lg Aowsy
ssep 9L
hh_ H1O M_
897 nun Buissaocold pazienads 096
Kows
v

pse) ainyde) 0gZ

US 9,332,216 B2

1
VIDEO FRAME RATE COMPENSATION
THROUGH ADJUSTMENT OF VERTICAL
BLANKING

CLAIM OF PRIORITY

This application claims the benefit of prior to commonly-
assigned, U.S. Provisional application No. 61/951,729, to
Roelof Roderick Colenbrander, entitled “VIDEO FRAME
RATE COMPENSATION THROUGH ADJUSTMENT OF
VERTICAL BLANKING”, filed Mar. 12, 2014, the entire
contents of which are herein incorporated by reference.

FIELD

The present disclosure relates to graphics processing and
video transfer. Certain aspects of the present disclosure relate
to systems and methods for frame rate compensation when
compressing and streaming rendered graphics over a net-
work.

BACKGROUND

Rendering graphics for transfer to a display device in real-
time is a complicated process that incorporates many well-
developed techniques to ensure that newly generated frames
are transferred from the source to the display with proper
timing. Typically, the process begins with a processing unit,
commonly a graphics processing unit (GPU) having a highly
parallel architecture tailored to the rendering task, rendering
each new frame of source content to a portion of memory
known as the frame buffer. The newly generated frames of
source content, referred to herein as “source frames,” are each
temporarily stored in the frame buffer in sequence as images
having an array of values that define the visual contents for
each pixel in that particular frame. While this is occurring,
these images are scanned out of the frame buffer in a process
that drives the images sequentially to a display device. Mean-
while, the display device traditionally updates the image dis-
played on the screen periodically at a fixed frequency, known
as the refresh rate, using the images that are scanned out from
the frame buffer.

In order to send the rendered frames to the display, the
images in the frame buffer are typically scanned out line by
line and transferred serially (in sequence) over some video
interface to the display device. During scanout, certain “invis-
ible” signals are generated to govern the transfer process, so
that what is actually transferred to the display device for each
frame that is output from the frame buffer, referred to herein
as an “output frame,” includes not only the visible pixel
values of the frame’s image, but other external signals which
may be used by the display device to resolve how the received
frame is displayed on the screen. This typically includes,
among other things, a vertical synchronization signal that is
pulsed between each scanned out frame image. The period of
time between each scanned out frame image, i.e., between the
last line or pixel of one frame image and the first line or pixel
of the subsequent frame’s image, is known as the “vertical
blanking interval.” This vertical blanking interval is gener-
ated as part of the scanout process, and this vertical synchro-
nization pulse used for synchronization between graphics
source and display.

The frequency at which the vertical synchronization pulse
occurs during scanout, and, as a result, the frequency at which
the vertical blanking interval occurs, is traditionally fixed in
relation to the refresh rate of the display device, so that each
image scanned out from the frame buffer coincides with each

15

20

25

40

45

2

refresh cycle of the display. If the frame rate of the original
graphics content, i.e., the rate at which new source frames are
drawn to the frame buffer by the GPU, is perfectly in sync
with the refresh rate of the display, each new source frame
drawn to the frame buffer by the GPU would correspond 1:1
to each image presented on the display device. For example,
if the display device has a refresh rate of 60 Hz and the GPU
were rendering new images to the frame buffer at a frame rate
of' 60 FPS in phase with the refresh cycle of the display, each
image updated on the screen of the display would perfectly
correspond to the source frames generated by the GPU.

However, in practice the frame rate of the source content is
often variable over time and may fluctuate upward and down-
ward, e.g., based on the complexity of the current scene or
other factors associated with the generation of the frames. For
example, if the current state of a video game causes too many
virtual objects or too much detail within the current field of
view, the frame rate may momentarily dip due to an increased
computational load required to render the frame. As a result,
the frame rate of the source content rendered to the frame
buffer may go out of sync with the scanout of the frames from
this buffer and the corresponding refresh cycles of the display
device. In other words, each “source frame” that is drawn to
the frame buffer may not exactly correspond to each “output
frame” that is driven to the display device.

An undesirable consequence which results from this
desynchronization between source frame rate and display
refresh is a visual artifact known as “tearing,” aptly named
because it appears as if there is a horizontal tear in the dis-
played image for a particular frame. Essentially, tearing
occurs when a frame is scanned out of the frame buffer while
that portion of memory is being updated with a new subse-
quent source frame, e.g., the GPU overwrites the image in the
buffer with a subsequent source frame before it is finished
being scanned out. As a result, the output frame that is trans-
ferred to the display device actually contains the images from
two or more consecutive source frames. Correspondingly,
when the display device updates its screen contents during
that refresh cycle, it simultaneously contains images from
different consecutive frames of the source content.

To minimize or eliminate tearing, the frame buffer com-
monly includes multiple buffers, i.e., a front frame buffer
from which the frame images are directly scanned out, and
one or more back frame buffers into which the GPU may draw
new frames while a prior frame is being scanned out of the
front frame buffer. When a new frame is finished rendering, a
back frame buffer is swapped with the front frame buffer, e.g.,
by copying the contents to the front buffer or by changing a
pointer value which specifies the memory address for the
front buffer, so that the contents of the front bufter may be
scanned out to the display device. In order to completely
eliminate tearing artifacts, this is often combined with a
restriction that prevents the GPU from swapping the buffers
until just after a refresh cycle of the display device. This is
typically accomplished by only forcing the GPU to wait for a
vsync pulse occurring during the vertical blanking interval
before it swaps the bufters. Since this vsync pulse and vertical
blanking interval is traditionally generated at fixed intervals
in relation to the refresh cycles of the display, it ensures that
only whole source frames are scanned out of the frame buffer,
preventing tearing artifacts from occurring.

While this is effective at preventing tearing, another prob-
lem known as “stuttering” may result, which may occur when
the source frame rate drops and the scanout unit is forced to
transfer an identical frame to the display. Stuttering may be
especially pronounced when the GPU is restricted to only
swapping the buffers between refresh cycles, since the frame

US 9,332,216 B2

3

rate is effectively restricted to only integral factors of the
display refresh rate. Since the GPU must have a completed
new source frame in order to perform the swap, ifthe GPU has
not finished rendering the subsequent frame at the time of the
synchronization pulse, it must wait another full cycle before it
can swap the buffers, even if the new source frame is other-
wise finished shortly thereafter. When stuttering occurs, the
sudden drop in the perceived frame rate at the display can be
distracting to the viewer.

In some instances, rather scanning frames out to a display
device, it is desirable to send the frames to some other desti-
nation. For example, cloud gaming and other cloud-based
video streaming applications may require rendered frames to
be compressed and sent over a network for display in real-
time, rather than transferred from the frame buffer directly to
a display device. In these situations, preferably whole source
frames are compressed by an encoder and sent to the remote
device with minimized latency. To achieve this task, the
encoder must operate on a restricted budget of resources to
ensure the frames reach the remote device on time. If the
source frame rate fluctuates and stuttering occurs, valuable
compression resources would be wasted towards compress-
ing an identical frame. This may result in poorer image qual-
ity in the encoded frames than might otherwise be achieved if
the compression resources were more efficiently utilized.
Furthermore, if identical frames are streamed over the net-
work, limited network bandwidth is wasted on unnecessary
frames.

It is within this context that aspects of the present disclo-
sure arise.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present disclosure can be readily
understood by considering the following detailed description
in conjunction with the accompanying drawings, in which:

FIG. 1 is a flow diagram of an example of processing
graphics and scanning out the graphics to a display device.

FIG. 2 is a schematic diagram of an example output frame.

FIG. 3 is a flow diagram of an example of processing
graphics and scanning out the graphics to an encoder for
streaming the graphics in real-time.

FIG. 4 is a flow diagram of an example method of frame
rate compensation according to aspects of the present disclo-
sure.

FIG. 5 is a block diagram of an example system according
to aspects of the present disclosure.

FIG. 6A is a schematic diagram of an example terminal
system architecture functioning as a video source.

FIG. 6B is an example host system and capture card archi-
tecture which may capture and compress video frames from
the video source.

FIG. 7 is a schematic diagram of an example video capture
card design having a specialized processing unit.

DETAILED DESCRIPTION

Introduction

Although the following detailed description contains many
specific details for the purposes of illustration, anyone of
ordinary skill in the art will appreciate that many variations
and alterations to the following details are within the scope of
the invention. Accordingly, the exemplary embodiments of
the disclosure described below are set forth without any loss
of generality to, and without imposing limitations upon, the
claimed invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

It is noted that certain aspects of the present disclosure
relate to video transfer, including rendering and scanning out
video frames for transfer over a video interface (sometimes
referred to herein as a display interface), as well as video
streaming to remote devices, including compression and
transmission of video frames for cloud gaming implementa-
tions. Further illustrative details and examples of these
aspects may be found in U.S. Non-Provisional patent appli-
cation Ser. No. 14/135,374, to Roelof Roderick Colen-
brander, entitled “VIDEO LATENCY REDUCTION”, filed
Dec. 19, 2013, the entire contents of which are herein incor-
porated by reference. It is noted that certain implementations
of the present disclosure may be configured in accordance
with various systems and methods described in that incorpo-
ration by reference document.

Various aspects of the present disclosure relate to systems
and methods configured to adjust the timing of compression
to better match the frame rate at which source content is
rendered by a processing unit. In certain implementations,
this may be accomplished by adjusting the timing of frame
scanout in response to detected fluctuations in the source
frame rate. For example, a vertical blanking interval gener-
ated during scanout of frames from a frame buffer may be
adjusted in response to detected changes in the frame rate at
which the source content is generated. In certain implemen-
tations, other techniques may be used to adjust or avoid com-
pressing or streaming duplicate frames, and rendered graph-
ics may be streamed over a network for display in real-time on
a remote device.

Details

To better illustrate certain aspects of the present disclosure,
an illustrative example of a technique for processing and
transferring graphics to a display device in real-time is
depicted in FIG. 1. The example depicted in FIG. 1 may have
certain similarities to conventional techniques of transferring
video frames to a local display device that utilizes a regular or
fixed refresh rate.

In the example depicted in FIG. 1, graphics may be ren-
dered, as indicated at 104, by a processing unit in order to
generate a plurality of source frames 102 in sequence. By way
of'example, the source frames 102 may be rendered based on
the state of an application, such as a video game, that deter-
mines the content of the source frames 102. The source frame
rate 106, which defines the rate at which new source frames
102 are rendered, may be variable and contain one or more
fluctuations over time based on, e.g., the complexity of the
graphics or amount of detail in the source frames being ren-
dered at that particular moment of time. In certain implemen-
tations, the processing unit which renders the source frames
may be a GPU that contains a specialized architecture tailored
to the task of processing graphics and rendering new source
frames 102.

Rendering the source frames, as indicated at 104, may
include a number of different steps depending on the configu-
ration of the rendering pipeline, which may culminate in
rendering the finished source frames 102 into a frame buffer
108, a portion of memory which temporarily stores each new
source frame in sequence. Each source frame 102 may be
stored in the frame buffer 108 as an image defined by an array
of pixel data values which define the visual values associated
with that particular frame.

During the process of rendering the source frames 102 into
the frame buffer 108, the frame buffer contents may also be
scanned out, as indicated at 114, as a sequence of output
frames 118 and transferred to a display device 116 in
sequence over a video interface connection, such as HDMI,
DVI, VGA, or another suitable interface standard. During this

US 9,332,216 B2

5

process, the scanout unit may generate a vertical blanking
interval at the end of each output frame 118, as well as various
other external signals to govern the process of transferring the
graphics frames from frame buffer 108 to display device 116.
As such, each output frame 118 may be understood to contain
not only the visible pixel values of the source frames 102, but
also invisible external signals that are used to govern the
timing and synchronize the transfer of the frames to display
device 116.

The display device 116 may periodically update the image
that is presented on its screen at a fixed refresh rate 122,
utilizing the vertical blanking signal and/or various external
signals associated with each output frame 118 to resolve the
pixel data that is received from the frame buffer 108 and
present only those pixel values associated with the image
contents from the frame buffer. As such, in the example
depicted in FIG. 1, the vertical blanking interval that is
defined at the boundary between each output frame may be
timed at a fixed frequency that coincides with the refresh rate
122 of the display.

In the example depicted in FIG. 1, to minimize or prevent
tearing artifacts within each image of the output frames 118
that are transferred to the display, the frame buffer 108 may
include multiple buffers, including a front buffer 110 and at
least one back buffer 112. The rendering 104 of the source
frames into the frame buffer may be performed in such a
manner that new source frames 102 are rendered into the back
buffer 112 while the front buffer 110 contains a source frame
102 that has not yet been scanned out to the display device
116. The front buffer 110 and the back buffer 112 may be
swapped only after a new source frame is finished being
rendered into the back buffer 112.

The timing of the swap of the buffers 110,112 may depend
on the current configuration of the system. In the illustrated
example, the swap is timed to coincide with the timing of a
pulse within the vertical blanking interval (VBI) 120, thereby
restricting a swap from occurring during the middle of the
scanout of any particular image from the front buffer 110.
However, it is noted that the system may instead be config-
ured to swap the front and back buffer as soon as the new
source frames are ready, e.g., as soon as they are finished
rendering into the back buffer 112. In these instances, tearing
artifacts may still be reduced, but may not be completely
eliminated since it is still possible for the buffers to be
swapped in the middle of scan out of a particular source image
from the frame buffer 108.

It is noted that, in the example depicted in FIG. 1, the
vertical blanking interval 120 may be restricted to occur at
regular, isochronous intervals to ensure proper transfer of the
frames in sync with the fixed refresh rate 122 of the display
hardware.

Turning to FIG. 2, an illustrative example of an output
frame 216 is depicted. To better appreciate various aspects of
the present disclosure, it is beneficial to discuss in more detail
how frames are transferred from a frame buffer through a
video interface/display interface, such as HDMI, DVI, VGA,
DisplayPort, and the like. The output frame 216 illustrated in
FIG. 2is avisual depiction of the content of each output frame
scanned out of a frame buffer, e.g., as shown in FIG. 1, that is
scanned out for transfer to a display device or other destina-
tion. The example output frame 216 may be one frame in a
sequence of similarly formatted frames which collectively
make up a video stream. The video frame sequence may
generated by some video content source, such as a video
game application, video file, live stream, and the like.

As shown in FIG. 2, the output frame 216 may be made up
of an array of pixels, which can be represented by a corre-

20

25

35

40

45

50

6

sponding array of pixel data values. The output frame 216
may also be transmitted with additional signals external to the
pixel data values, as described below.

Each pixel data value in the array may include a plurality of
color space components depending on the particular color
model used. For example, each pixel data value in the array
may include two chroma (color) values and luma (intensity)
value for the corresponding pixel, if a YCrCb (digital video)
or YPbPr (analog video) is used. Alternatively, RGB color
space, or some other set of color space components may be
used for the pixel data of each pixel. Moreover, the pixel data
values for each color space component of each pixel may be
digitally represented by a plurality of bits. For example, a
24-bit color depth may utilize 8-bits per color space compo-
nent per pixel. The term “pixel” is sometimes used herein as
shorthand when referring to that portion of an output frame
that corresponds to a single tick of a pixel clock.

In addition to pixel data values, an output frame may also
include external signals in addition to the pixel data values.
The external signals may include a signal having information
indicating whether the pixel is visible, e.g., a data enable
signal indicating whether the pixel is meant to be displayed
and therefore has a visible pixel contained in the pixel data
values for that pixel. As can be seen in the example output
frame 216 of FIG. 2, the total number of pixels in the array
includes both visible pixels 201 (illustrated in the figure as a
grid), and invisible pixels 203 (illustrated in the figure as the
blank and lined regions). In the example frame of FIG. 2, the
visible pixels 201 make up the active image region of the
output frame, which may be indicated by a high data enable
value, and the invisible pixels 203 make up the blanking
region of the output frame in this example (e.g., including
both horizontal and vertical blanking regions), which may be
indicated by low data values. The visible pixels 201 in the
active image region may collectively make up the visible
image of'the frame that is meant to be displayed. In particular,
in this example the active region having visible pixels 201 is
made up of the source content and their corresponding pixel
values which are retrieved from the frame buffer during the
scan out of the frame.

It is noted that in the example output frame 216 of FIG. 2,
the visible pixels of the video frame image coincide with the
active region of the frame’s format. However, it is noted that
the present disclosure is not limited to this situation, and
certain implementations of the present disclosure may actu-
ally include invisible pixels that are not only in the blanking
region, but are also within the active image region of the
output frame that is retrieved from the frame buffer. For
example, as described in U.S. application Ser. No. 14/135,
374, entitled “VIDEO LATENCY REDUCTION” and fully
incorporated by reference herein, the active image region of
an output frame may include invisible pixels if the GPU is
configured to render source frames to the frame buffer in a
larger format that contains more pixels than the actual source
content, such as, e.g., in accordance with the techniques
described with reference to FIGS. 7A-8 of that application
Ser. No. 14/135,374.

Most devices, e.g., consoles, PCs, phones, and other video
sources, render video frames to a frame buffer organized in
RGB pixels with typically at least 8-bit/1-byte per color com-
ponent. The video signal generated by a video transmitter,
which may be part of the GPU that renders the video frames
or which may be external to the GPU, may transport pixels in
RGB, but it can do so in other color space models, such as
YCrCb (digital video) or YPbPr (analog video), in case some-
thing (e.g., the transmitter) has to convert from RGB to the
other format.

US 9,332,216 B2

7

Once a GPU has completed rendering, it may scan the
frame out, which is the process of sending the frame pixel by
pixel over some serial connection (e.g., HDMI, DVI, etc.).
The scanout process may involve the generation of the exter-
nal signals of each output frame 216, and the scanout process
may partly depend on the type of video connection, as well as
whether the video transmitter is inside the GPU or outside it.
In general the GPU may generate a plurality of signals when
scanning the frame out, including signals external to the pixel
data values. Generally speaking, these signals may be under-
stood to be separate signals that occur simultaneously with
each other during the scanout and transfer of the frame. The
signals when scanning the frame out may include:

pixel clock signal

data enable signal

horizontal synchronization (hsync) signal

vertical synchronization (vsync) signal

data bus signals that carry color space components for

active pixels (e.g., RGB, 24-bit wide, with 8-bits per
color space component)

During scanout of the rendered frame, the GPU may
retrieve the pixels from the frame buffer that holds the com-
pleted source frame (e.g., the frame buffer). As an example,
say the GPU is currently at the first pixel of a line. For the
given line, it will place a new pixel data value on the data bus
signals at each “tick” of the pixel clock signal. Also it will
output a high level on the data enable signal corresponding to
that pixel.

At the end of the line there is a horizontal blanking period
(of duration HTOTAL-HDISPLAY pixels, or pixel clock
pulses). During the blanking period several signals change.
First of all, a pulse may be generated in the hsync signal to
notify a transition to the next line. The data enable signal is
made low, which means that any data currently on the data bus
signals that ordinarily carry color space components should
not be interpreted as pixels (these are the invisible pixels at the
end of the line).

This process may continue line by line until the end of the
frame image. At the end of the output frame, after the full
source frame image has been retrieved, e.g., after all the
visible pixel data values have been retrieved from the frame
buffer, a pulse may be generated in the vsync signal, within
the vertical blanking region of the output frame. In particular,
this interval of time during the scanout process, at the end of
the output frame and after the full source frame image from
the frame buffer has been retrieved is known as the vertical
blanking interval 209. For any of the invisible lines during the
vertical blanking interval at the end of the output frame 216,
the data enable line is also low.

Generally, whenever the data enable signal is low, the pixel
is invisible, and the pixel data values of the data bus signal do
not contain the desired color space values which correspond
to the display region of the image. Since there is always an
active pixel clock, invisible pixels are essentially generated
on the data bus signal. It is noted that horizontal and vertical
synchronization signals are separate from the pixel data of the
data bus signal.

The process of transmitting video signals, e.g., made up of
output frames 216, over a serial interface may depend on the
video technology. For classic VGA, the described signals are
actually directly consumed by the monitor, including the
pixel data signal and the external signals associated with the
output frame. The external signals may include timing signals
directly used for VGA. The pixel data signals may be analog
signals in which each color component has its own channel,
e.g., ared signal channel, a green signal channel, and a blue
signal channel. A Digital to Analog Converter (DAC) may

10

15

20

25

30

35

40

45

50

55

60

65

8

generate the analog pixel signal from the digital data bus
signals (from the described 24-bit with 8-bit per channel). For
other technologies like DVI, HDMI, or DisplayPort, a trans-
mitter may accept the above described signals and convert
them to a signal appropriate for that technology. In case of
HDMI, the HDMI transmitter has 3 TMDS data channels
(TX0 to TX2) and a TMDS clock, in which the HDMI trans-
mitter at the video source embeds all the signals (hsync sig-
nal, vsync signal, pixel data bus signal) and TMDS clock
contains the pixel clock signal in some way. The HDMI
receiver on the other end of the HDMI connector (e.g., HDMI
cable) inside the video sink (e.g., the HDMI receiver inside
the display device, video capture card, or other video sink),
has these signals as inputs, but recovers hsync, vsync, data,
and the other signals. This is also true for other video stan-
dards like DVI or DisplayPort.

If the video transmitter is internal to the GPU, the scanout
logic may operate on the described signals, but the scanout
logic may also directly output, e.g., HDMI, bypassing the
intermediate step for these other signals.

The pixel data values and other signals associated with
each pixel for the output frame are typically output line by
line, with each line containing a plurality of pixels and each
frame containing a plurality oflines. Normally, these lines are
horizontally oriented relative to the image that is displayed,
and the pixels in a horizontal line may be transferred in
sequence, e.g., serial transfer, from left to right in the line
through a video communication interface from the video
source to the display device or other video sink device. Simi-
larly, the horizontal lines may be output in sequence from top
to bottom until the end of the frame is reached. Accordingly,
all the pixels in the output frame 216, including both visible
201 and invisible pixels 203, may have a defined sequence for
transfer, and the lines during the vertical blanking interval
209 may be located at the end of this sequence for each output
frame 216.

In the example output frame 216 of FIG. 2, each line of the
frame is a horizontal line having a total number of pixels
HTOTAL, which may define the total horizontal resolution of
the output frame. Similarly, the example output frame 216 has
a total number of lines VTOTAL, which may define the total
vertical resolution of the frame. Thus, the total horizontal and
vertical resolution includes both visible and invisible pixels.

The active display region 201 of the frame, e.g., the region
retrieved from the frame buffer, may include a plurality of
active lines VDISPLAY defining the vertical display resolu-
tion of the frame, and each active line may include a plurality
of active pixels HDISPLAY, which defines the horizontal
display resolution of the frame. The active display region 201
may correspond to that source frame that is rendered by a
GPU into the frame buffer as described above.

It can be appreciated from the forgoing that the total reso-
Iution (e.g., HTOTALxVTOTAL) of the output frame 216
may be greater than the display resolution (e.g., HDISPLAY x
VDISPLAY) of the output frame, due to the presence of the
blanking region and invisible pixels 203 in the frame, which
may be generated during the scan out of the source frame,
e.g., as described above. Specifically, the active display
region corresponds to those pixels retrieved from the frame
buffer, while the blanking region refers to those pixels gen-
erated due to the addition of external signals and extra ticks of
the pixel clock generated during scanout. The blanking region
may include a plurality of invisible pixels at the end of each
line, corresponding to the horizontal blanking interval, and a
plurality of invisible lines at the end of each frame, corre-
sponding to the vertical blanking interval 209. Generally
speaking, the synchronization pulses in the blanking regions

US 9,332,216 B2

9

may be provided to synchronize the video stream transfer
between the video source and a display, with the horizontal
synchronization pulses 205 within the hsync signal generally
indicating the transitions between each line in the frame, and
the vertical synchronization pulses 207 generally indicating
the transitions between each frame in the sequence of output
frames that makes up the video stream. While the hsync and
vsync signals are external signals that are not part of the pixel
data, e.g., RGB values and the like, since the GPU always
outputs the pixel data and synchronization signals on the pixel
clock, there happen to be invisible pixels in the pixel data bus
signal during the period when pulses on hsync or vsync lines
are active. Likewise, the hsync and vsync signals may be
inactive during the period corresponding to those visible pixel
values on the pixel data bus signal. In the case of HDMI,
hsync and vsync are actually transported in the pixel data.
Then, after transport over an HDMI cable, the HDMI receiver
would separate the signals again.

As can be seen in the example of FIG. 2, transferring the
pixels of the frame 216 in sequence, e.g., pixel by pixel, will
result in the pixels corresponding to the horizontal blanking
interval 211 being transferred at the end of each line, and the
pixels corresponding to the vertical blanking interval 209
being transferred at the end of the frame 216. The horizontal
synchronization signal may include horizontal synchroniza-
tion pulse 205 during the horizontal blanking interval 211,
with a corresponding horizontal front porch and horizontal
back porch (illustrated in the diagram as blank regions before
and after the horizontal synchronization pulse 205, respec-
tively), and the vertical synchronization signal may include a
vertical synchronization pulse 207 with a corresponding ver-
tical front porch and vertical back porch (illustrated in the
diagram as blank regions before and after the vertical syn-
chronization pulse 207, respectively), and these pixels may
collectively make up the invisible pixels 203 in the example
output frame 216.

With reference to the example of FIG. 2, a video signal may
be made up of a plurality of output frames similar to the
example illustrated in FIG. 2, and output frames may be
transferred from a video source to a display device, video
capture device, or other video sink device through a video
interface, such as HDMI, DVI, VGA, and the like. Generally
speaking, a refresh rate (e.g., VRrefresh) of display hardware
should correspond to the rate at which frames are scanned out
of the frame buffer in an output video stream. As a conse-
quence, the timing of the transfer of pixels through an inter-
face between a video source and a display device should be
synchronized in order to ensure that the rate of transfer of the
pixels in the video stream is synchronized with the display
and keeps up with the display refresh rate.

Typically, a pixel clock, which may be an external signal
generated by electronics or other components embodied in
the video transfer hardware and which may be generated in
association with the scan out of the frames as described
above, governs the timing for the transfer of each pixel
between video source and video sink. Generally speaking, the
pixel clock will control the timing of the transfer of pixels so
that the total number of pixels within each frame is transferred
from the video source at a rate that is in sync with the refresh
rate of'the display device. For a serial interface in which pixels
are transferred sequentially, one after another, the pixel clock
may be mathematically expressed as a product of the total
number of pixels within each line, the total number of lines
within each frame, and the vertical refresh rate as follows:

Pixel Clock=HTOTAL*VTOTAL* VRefresh

10

15

20

25

30

35

40

45

50

55

60

65

10

Standard video interfaces typically support different dis-
play resolutions (e.g., HDISPLAYXVDISPLAY), such as
720p (1280x720), 1080p (1920x1080), and the like, which
each have a different total number of pixels for each frame. A
pixel clock generator, which may be embodied in the video
transfer hardware, may be configured to generate a pixel
clock for a given video resolution and/or frame rate based on
a formula similar to the mathematical expression shown
above, e.g., based on the refresh rate and the resolution of
each frame. It is noted that the upper bounds of the pixel clock
may be limited due to practical considerations and technical
requirements of the electronics and components involved, as
well as a practical limit to the frequency at which the pixel
clock may be accurately maintained. For example, display
manufacturers typically want to keep the pixel clock as low as
possible because the higher it is, the more it complicates the
design ofthe electronics and the component costs. As a result,
with reference to FIG. 2, the number of active lines (VDIS-
PLAY) and total number of lines (VITOTAL) in a frame are
typically close in value because only a small number of lines
are required for the vertical synchronization signal, and con-
ventional wisdom generally dictates that utilizing more lines
than necessary is undesirable.

Various implementations of the present disclosure may
incorporate techniques for decreasing the time to transfer an
output video frame by artificially increasing the total number
ofpixels, i.e., ticks of a pixel clock, in a frame beyond what is
needed to encompass the visible pixel data and/or synchroni-
zation signals within each output frame. As a result, a pixel
clock rate may be increased to output the greater number of
total pixels, causing the desired visible pixels embodying the
visible video frame image within the active region of the
output frame to be transferred in less time. In some imple-
mentations, this may be accomplished by increasing the num-
ber of lines at the end of each frame’s sequence or otherwise
putting the output frames in some frame format that has a
greater number of total pixels than the source frame image.

By way of example, and not by way of limitation, for the
example output video frame 216 depicted in FIG. 2, assuming
a 60 Hz refresh rate (VRefresh), all the visible image lines of
an output frame will have been output every VDISPLAY/
VTOTAL*V60 Hz, e.g., based on the ratio of the active display
lines to the total number of lines in the frame. Where VDIS-
PLAY and VTOTAL are close in value, the time to output the
image 201 within the frame would be roughly ~V60 Hz, which
corresponds to 16.7 ms. In accordance with various aspects of
the present disclosure, this time to output the visible image
lines of a frame may be reduced by making VTOTAL signifi-
cantly larger than VDISPLAY. Thus, for the same 60 Hz
vertical refresh rate mentioned above, if VTOTAL is twice the
size of VDISPLAY, that is the total number of lines within a
frame is double the number of visible/active lines within the
frame, the transfer time reduces to 8.3 ms, since after VDIS-
PLAY/VTOTAL=0.5%16.7, the desired image within the
frame would be transferred. VDISPLAY/VTOTAL may be
made smaller, for example, by adding lines to the frame in
some fashion. Further examples of techniques for reducing
video transfer latency and forming output frames having arti-
ficially increased numbers of pixels are described in U.S.
application Ser. No. 14/135374, entitled “VIDEO
LATENCY REDUCTION” and fully incorporated by refer-
ence herein. It is noted that implementations of the present
disclosure may utilize any of the techniques for forming
output frames described in that document.

Turning now to FIG. 3, an illustrative example of a tech-
nique for processing and transferring graphics in real-time is
depicted. Unlike the example depicted in FIG. 1, the example

US 9,332,216 B2

11

depicted in FIG. 3 involves scanning out the rendered frames
to a video capture unit instead of directly to a display device
that refreshes at fixed intervals. In the example depicted in
FIG. 3, captured frames may be further compressed using a
video encoder so that, e.g., rendered graphics may be trans-
mitted over network to a remote device for display in real-
time.

Turning to the example depicted in FIG. 3 in more detail,
graphics may be rendered, as indicated at 304, by a processing
unit in order to generate a plurality of source frames 302 in
sequence. By way of example, and not by way of limitation,
the source frames 302 may be rendered based on the state of
an application, such as a video game, that determines the
content of the source frames 302.

The frame rate 306 of the source content, which defines the
rate at which new source frames 302 are rendered, may be
variable and contain one or more fluctuations over time based
on a variety of factors, such as the complexity of the scene
currently being rendered. In certain implementations, the pro-
cessing unit which renders the source frames may be a GPU
that contains a specialized architecture tailored to the task of
processing graphics and rendering new source frames 302.

Rendering the source frames, as indicated at 304, may
include a number of different steps depending on the configu-
ration of the rendering pipeline, which may culminate in
rendering the finished source frames 302 into a frame buffer
308. Each source frame 302 may be stored in the frame buffer
308 in sequence as an image defined by an array of pixel data
values, e.g., a bitmap image (bmp), which define the visual
values associated with that particular source frame.

During the process of rendering the source frames 302 into
the frame buffer 308, the frame buffer contents may also be
scanned out, as indicated at 314, as a sequence of output
frames 318 and transferred to a video capture unit 324 in
sequence over a video interface connection, such as HDMI,
DVI, VGA, or another suitable display interface standard. In
certain implementations, a video capture card or other device
may be used for the frame capture 324, and the video capture
unit may be that may be configured to capture only the set of
visible pixels within each output frame that correspond to the
source frames rendered by the processing unit.

During this process, the scanout unit may generate several
external signals, including a vertical synchronization signal.
Generating the vertical synchronization signal may also
involve the generation of one or more active vsync pulses
after each source frame 302 that is scanned out of the frame
buffer 308, and, as a result, the generation of a vertical blank-
ing interval 320 between each scanned out frame. This may
result in the generation of invisible lines at the end of each
output frame 318, e.g., as described above with reference to
the illustrated example of FIG. 2. At least a portion of the
vertical blanking interval may correspond to these invisible
lines between each scanned-out source frame 302.

The frame capture unit may capture the source frames
contained within each received output frame 318 in sequence,
and may utilize the vertical blanking interval and/or various
external signals associated with each output frame 318 to
resolve the pixel data that is received from the frame buffer
308 and capture the rendered source frames corresponding to
those visible pixels. Each captured source frame 302 may be
then be compressed using a suitable video encoder, e.g.,
codec, as indicated at 326. The compressed frames 330 may
then be optionally sent over a network for display on a
remotely located display device.

In the example depicted in FIG. 3, to minimize or prevent
tearing artifacts within each image of the output frames 318
that are scanned out, the frame buffer 308 may include mul-

10

15

20

25

30

35

40

45

50

55

60

65

12

tiple butfers, including a front buffer 310 and at least one back
buffer 312. The rendering 304 of the source frames into the
frame buffer may be performed in such a manner that new
source frames 302 are rendered into the back buffer 312 while
the front buffer 310 contains a source frame 302 that has not
yet been scanned out. Generally speaking, the front buffer
310 and the back buffer 312 may be swapped only after a new
source frame is finished being rendered into the back buffer
312.

The timing of the swap of the buffers 310,312 may depend
on the configuration of the system. In the illustrated example,
the swap is timed to coincide with the timing of the vertical
blanking interval (VBI) 320, thereby restricting a swap from
occurring during the middle of the scanout of any particular
image from the front buffer 310. More specifically, in the
illustrated example, the back frame buffer 312 may be con-
figured to swap with the front frame buffer 310 only in
response to a vertical synchronization pulse that is generated
during the vertical blanking interval during scanout 314 ofthe
frames, and the vsync pulse which indicates to the processing
unit that the buffers may be swapped may occur at or near the
beginning of the vertical blanking interval. As a result, each
output frame 318 may contain only whole source frames 302.
If, alternatively, the system is configured to swap the front and
back buffer as soon as the new source frames are ready, e.g.,
as soon as they are finished rendering into the back buffer 312
tearing may not be completely eliminated since it is still
possible for the buffers to be swapped in the middle of scan
out of a particular source image from the frame buffer 308. In
these instances, the source frames within the output frame
318 that is scanned out may actually contain portions of
consecutive rendered source frames.

In accordance with certain aspects of the present disclo-
sure, frame rate of the source content 306 may be detected,
and the vertical blanking interval 320 may be adjusted in
response to fluctuations in the frame rate, thereby better
matching compression rate and timing 328 to the source
content. For example, if it is detected that the source frame
rate 306 momentarily drops, e.g., due to the complexity of the
scene, the vertical blanking interval 320 may be adjusted to
delay scanout of one or more frames in response. This may be
beneficial to avoid stuttering or other drawbacks associated
with an instantaneous frame rate that is below normal, better
matching the rate and timing of the compression and stream-
ing to the source content. Conversely, if it is detected that the
source frame rate 306 is high, the vertical blanking interval
320 may be adjusted to scan frames out of the frame buffer
308 more quickly. This may be beneficial, for example, when
an encoder is operating on a fixed budget per frame. If the
encoder receives the frames sooner, it may be able to com-
press the frames at a higher resolution, thereby improving
image quality for the remote viewer.

Turning now to FIG. 4, an illustrative example of a method
400 adjusting a vertical blanking interval in response to
detected fluctuations in the frame rate of source content is
depicted. The illustrative method of FIG. 4 may be involve a
graphics processing and transfer technique that is similar to
the example depicted in FIG. 3.

As shown in FIG. 4, the method 400 may include rendering
a plurality of source frames in sequence into a frame buffer
with a processing unit, as indicated at 431. Each new source
frame may be rendered in response to one or more corre-
sponding draw calls received based on an application 433
output. By way of example, and not by way of limitation, the
processing unit for rendering the source frames may be a GPU
having a specialized role of processing graphics for the appli-
cation, while the application itself may be executed by a CPU.

US 9,332,216 B2

13
A graphics application programming interface (API) may
coordinate draw calls from CPU to GPU in order to coordi-
nate the processing tasks and initiate the generation of new
source frames according to the state of the application.

As indicated at 432, the method may include scanning out
a plurality of output frames in sequence from a frame buffer.
In certain implementations, the frame buffer may include
both a front buffer and one or more back buffers, and the
frames may be scanned out directly from the front buffer
while new source frames are being rendered into the back
buffer. The scanout of the frames, as indicated at 432, may
involve the generation of various external signals in addition
to the pixel data that is scanned out of the frame buffer,
including a vertical synchronization signal, as well as, e.g., a
horizontal synchronization signal, pixel clock signal, and
data enable signal as described above. The frames may be
scanned out with a scanout unit that may include various
components configured to generate the signals described
above associated with the transfer of frames.

Each output frame that is scanned out of the frame buffer
may include an image corresponding to a source frame ren-
dered by the processing unit. As indicated at 434, the method
may include capturing the source frames scanned out of the
frame buffer. In certain implementations, the frames may be
scanned out of the frame buffer and sent through a video
interface connection to a video capture unit, which may cap-
ture the source content in step 434.

The method 400 may also include compressing the cap-
tured frames using an encoder, e.g., a video codec. The frames
may be compressed in any of a variety of known video com-
pression formats, such as h.264 or another suitable format for
transmission over a network having a limited bandwidth. In
certain implementations, the frames may be encoded using a
low latency encoder for transfer to a remote device in real-
time. The compressed frames may then be transmitted to one
or more remote devices over a network, such as the Internet,
as indicated at 438.

The illustrative method 400 depicted in FIG. 4 may also
compensate for frame rate fluctuations in the rendering of
source content in accordance to certain aspects of the present
disclosure. This may include detecting one or more changes
or fluctuations in the frame rate of the source content, as
indicated at 440. In response to one or more fluctuations in the
frame rate of the source content, a vertical blanking interval
that is generated as part of the scanout process 432 may be
adjusted to compensate for the frame rate fluctuations, as
indicated at 442.

It is noted that by adjusting the vertical blanking interval in
response to detected changes in the frame rate, the timing and
rate of compression 436 and streaming 438 may be better
matched to the rate at which the source content is generated at
431. In certain implementations, the method may involve
delaying a scanout of one or more frames in response to one
or more downward fluctuations in the frame rate in which the
speed at which the source content is momentarily decreased.
In other implementations, method may involve speeding up
the rate at which frames are scanned out of the frame buffer in
response to one or more upward fluctuations in the frame rate
in which the speed at which the source content is increased. In
yet further implementations, the method may involve both
depending on the nature of the fluctuations in the source
frame rate at different periods of time during the rendering
process.

It is noted that the manner in which the frame rate is
detected at 440 and the vertical blanking interval is adjusted at
442 may be performed in a variety of ways according to
aspects of the present disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

14

In certain implementations, the frame rate may be detected,
as indicated at 440, by placing a marker into memory after
each new source frame is finished rendering and tracking the
timing between each marker. For example, a scanout unit and
aprocessing unit, e.g., a GPU, may be controlled by a graph-
ics driver (sometimes known as a “display driver” or “GPU
driver”) of a system that renders the source graphics. An
application, which may optionally be implemented by sepa-
rate processing unit, e.g., a CPU, may send drawing com-
mands (e.g., draw calls) to the graphics driver, and the GPU
may render the source frames to a frame buffer in response.
When the frame is ready, the application may place a marker
in a memory buffer, e.g., the back frame buffer, which notifies
the GPU that the frame is ready. The graphics driver may track
the time since the last “frame ready” marker, and the time
between markers may be indicative of the frame rate of the
source content. If the frame ready marker has not been
received by some deadline, e.g., the time between consecutive
markers exceeds some pre-defined time threshold between
markers, then the graphics driver may delay scanout for the
next frame. Accordingly, the graphics driver may be config-
ured to track the time between each source frame that is
finished rendering into the frame buffer, and whenever the
time exceeds some pre-defined threshold, it may delay
scanout of a subsequent frame for a finite period of time.

According to certain aspects of the present disclosure, the
graphics driver may modify registers on the GPU (e.g. over
the PCl-express bus) to adjust GPU state. In addition, the
graphics driver may also send commands to the GPU, which
is often done by sending one or more commands to the GPU
using a command buffer. The main difference is that register
access is synchronous (blocking), while sending commands
through buffers is asynchronous. In the past everything was
done using registers, which was typically slow, so presently
registers are used mostly for configuration purposes.

In certain implementations of the present disclosure, in
order to adjust the vertical blanking interval, as indicated at
442, the graphics driver may adjust a GPU register or send a
command to the GPU through a command buffer that would
delay the scanout. In certain implementations, the driver
could send a command to put the scanout unit to sleep for a
finite period of time, e.g., power down the scanout unit to
delay scanout for a finite period of time. In certain implemen-
tations, the vertical blanking interval may be adjusted by
maintaining an active vsync signal for a longer period of time
between scanout in response to a slower frame rate, e.g., a
detected downward fluctuation in the frame rate. For
example, the graphics driver may generate dummy lines at the
end of each frame, e.g., by maintaining an active vertical
synchronization signal, until a frame ready marker is
received. If the timing of the vertical blanking interval is
synchronized to the time of the frame ready markers, then the
rate at which frame are scanned out to a video capture unit
and/or encoder may be better synchronized to the frame rate
of the source content. This may result in a dynamic vertical
blanking interval generated in by the scanout unit having a
length varies with the frame rate. The net effect may result in
the vertical blanking interval between scanned out frames
being longer or shorter in response to changes in the frame
rate of the source content.

Itis noted that, in some instances, there may be a threshold
in which a frame may need to be regenerated in order to
maintain some activity. This threshold time may be between
0.5 T and 2 T, where T=1/F, with F being a standard frame
rate, e.g., 60 frames/sec.

It is noted that the implementation depicted in FIG. 4 is
provided for purposes of illustration only, and implementa-

US 9,332,216 B2

15

tions of the present disclosure include other techniques for
compensating for frame rate beyond adjusting the vertical
blanking interval as shown in FIG. 4.

In certain implementations, the rate of compression and
streaming may be adjusted after the scanout phase in response
to fluctuations in the source frame rate. For example, frames
may be scanned out of the frame buffer and transferred using
a display interface, which may a video transmitter and
receiver. When the frame rate fluctuates downward, one or
more components of the display interface may be momen-
tarily disabled to prevent duplicate frames from being
received by the encoder, thereby preserving compression
resources. For example, the video transmitter may be momen-
tarily disabled to prevent transfer of one or more frames to the
encoder. Itis noted that, in contrast to some of the implemen-
tations described above, this technique would only work to
decrease the compression and/or streaming rate, but not
increase it.

Itis noted that many of the techniques described above may
be particularly useful in implementations involving real-time
streaming where the graphics content is generated by a first
device and streamed by a separate device. For example, a
cloud gaming implementation may involve source graphics
content which is generated by a gaming console or other
video gaming system, and the graphics frames may be
scanned out to a separate streaming server system that then
may capture, compress, and stream the frames to a remote
client device. In these situations, the encoder may have no
way of adjusting to the frame rate of the source content, since
it is on a separate system and receives frames captured after
scanout. Thus, adjusting the scanout and the vertical blanking
interval generated during scanout in response to detected
changes in the graphics source’s frame rate may better match
the timing of the frames received by the separate system.

However, certain implementations may involve an encoder
and a streaming unit, such as streaming software, which oper-
ate on the same device as the graphics source. In these
examples, it may be possible to perform the scanout in a
conventional manner, and configure the encoder and/or the
streaming unit to omit certain frames in response to detected
changes in the frame rate of the source content. By way of
example, and not by way of limitation, if the system detects
that the source frame rate has momentarily dropped, the sys-
tem may be configured to forgo the encoding of one or more
frames received during scanout in response, e.g., to preserve
compression resources. By way of further example, if the
system detects that the source frame rate has momentarily
dropped, the system may be configured to still encode the
frame, but the streaming unit may forgo sending one or more
duplicate frames in response, e.g., to preserve network band-
width. If these units are all part of the same device as the
graphics source, the graphics driver may be configured to
notify the encoder and/or streaming software so that they can
respond to fluctuations in the frame rate in this manner, which
may not be possible when the encoding and streaming device
is separate from the graphics source device.

Turning now to FIG. 5, an example system 500 is depicted
to illustrate various aspects of the present disclosure. FIG. 5
provides an overview of an example hardware/software archi-
tecture of a system for generating, capturing, compressing,
and streaming video frames according to various implemen-
tations of the present disclosure. The system 500 may be
configured to compensate for frame rate fluctuations in ren-
dered graphics content according to various aspects of the
present disclosure. For example, the system 500 may be con-
figured to perform a method having features in common with
the method of FIG. 4.

25

30

40

45

50

55

16

Turning to FIG. 5 in more detail, system 500 may include
a first computing device 550 and a second computing device
552 that are connected by a display interface 554 (sometimes
also referred to herein as a “video interface”). The first com-
puting device 550 may be a graphics source configured to
generate and render graphics, and the second computing
device 552 may be a streaming device configured to the
compress frames and send the frames over a network 556 to a
remote client device 558. The graphics source 550 may be a
terminal of the streaming server 552 that is configured to
scanout rendered frames to the host system 552 through a
display interface connection 554, such as HDMI, VGA, DVI,
and the like.

The graphics source device 550 may include one or more
processing units 560,562 and one or more memory units 564
configured to implement various aspects of graphics process-
ing, transfer, and frame rate compensation in accordance with
the present disclosure. In the illustrated example, the one or
more processing units include at least two distinct processing
units, a central processing unit (CPU) 560 and a graphics
processing unit (GPU) 562. The CPU 560 may be configured
to implement an application, e.g., a video game, the state of
which may determine the content of graphics to be output.
The CPU 560 may be configured to implement one or more
graphics drivers 566 to issue drawing commands to the GPU
562, as well as control scanout of frames. In response to the
drawing commands issued by the graphics driver 566, the
GPU 562 may be configured to render new source frames into
a frame buffer 568, which may be a portion of the one or more
memory units that temporarily holds each rendered source
frame in sequence. In certain implementations, the frame
buffer 568 may include multiple buffers, including a front
buffer and one or more back butfers, and the GPU 562 may be
configured to swap the buffers when it is finished rendering
new source frames in the back buffer.

The graphics source may also include a scanout unit 570,
which may be configured to scan rendered frames out of the
frame buffer 568 in accordance with various aspects
described above. The scanout unit may be configured to scan
output frames line by line directly out of a front buffer of the
frame buffer 568, as well as generate a vertical synchroniza-
tion signal and other external signals during the scanout pro-
cess, e.g., as described above, and the vertical synchroniza-
tion signal may be generated so as to generate a vertical
blanking interval between each source frame that is retrieved
from the frame buffer 568.

Various aspects of the scanout unit 570 the GPU 562 may
be controlled by the CPU 560 via the one or more graphics
drivers 566, which may be implemented as one or more
software programs that cooperate with an operating system of
the graphics source 550, and which may be embodied in a
non-transitory computer readable medium for execution by
the CPU or other processing unit. The graphics source device
550 may be configured to detect one or more fluctuations in
the frame rate of the source content rendered by the GPU 562,
and the device may be configured to the scanout in response
to the one or more fluctuations. This may be accomplished,
for example, by any of the techniques described with refer-
ence to FI1G. 4.

In certain implementations, to detect the frame rate the one
or more processing units 560,562 may be configured to place
a marker into the one or more memory unit 564 when each
new source frame is rendered. For example, the one or more
memory units 564 may contain a frame buffer 568 into which
the GPU 562 renders new frames, and the GPU 562 may be
configured to place a marker into the frame buffer 568 when
it is finished rendering each new frame. The graphics driver

US 9,332,216 B2

17

566 may track the timing of each new marker in the buffer 568
and may make adjustments in response to detected changes,
e.g., as described above with reference to FIG. 4.

In certain implementations, the driver may be configured to
make adjustments in the scanout timing to compensate for
detected fluctuations in the frame rate rendered by the GPU
562. For example, it may be configured to adjust a vertical
blanking interval in response to one or more fluctuations to
increase or decrease an instantaneous rate of the scanout of
frames. This may be accomplished, e.g., by the graphics
driver 566 temporarily extending the portion of the vsync
signal that is generated between frames or by putting the
scanout unit 570 to sleep for a finite period of time. This may
also be accomplished by temporarily disabling the display
interface 554 momentarily to prevent the transfer of one or
more frames.

The scanout of the frames by the scanout unit 570 may
drive new frames to streaming device 552 over the display
interface 554, as shown in FIG. 5. The streaming server 552
may include a frame capture unit 576, such as a video capture
card, that is configured to capture the source frame images
contained within each output frame transferred over the dis-
play interface 554. In certain implementations, the frame
capture unit 576 may be specially adapted coordinate with the
uniquely tailored frames that may be rendered by the GPU
562 and sent by the scanout unit 570. For example, in certain
implementations, the frame capture unit may be configured to
count the lines and/or pixels received in order to only capture
those visible pixels which contain the desired source content.

The streaming computing device 552 may also include an
encoder, e.g., a video codec, configured to compress the
source frames captured by the frame capture unit 576. The
streaming computing device 552 may also include a stream-
ing unit 580 that is configured to send the compressed frames
over the network 566 to one or more client devices 558. In
certain implementations, the client 558 may also be a com-
puting device having at least one processor unit 586 coupled
to at least one memory unit 588, and the system 500 may be
configured to implement video streaming in real-time, so that
the client device 558 may decompress the received frames
with a decoder 582 and display the frames with a display
device 584 in real-time with minimized latency from when
they are rendered by the GPU 562 of the graphics source 550.

While various components of FIG. 5 are depicted sepa-
rately for purposes of explanation, it is noted that many of the
illustrated components may be physically implemented as
common or integral units.

For example, in certain implementations, the scanout unit
570 may be physically implemented as part of the GPU 562,
or it may be a separate unit. Similarly, in certain implemen-
tations the scanout unit may be physically implemented as
separate components or may be a physically integrated unit.
The scanout unit 570 may generate a plurality of signals,
including a vertical synchronization signal, a horizontal syn-
chronization signal, a pixel clock, and the like. The scanout
unit may be a single integral unit which contains components
for generating all of these signals, or the scanout unit 570 may
be made up distinct signal generators for these components.
For example, a pixel clock generator of the scanout unit and a
vertical synchronization signal generator of the scanout to not
need to be part of the same physical chip.

By way of further example, the one or more memory units
564 may include a plurality of distinct memory units for
different purposes. For example, the memory unit 564 may
optionally include a dedicated graphics memory unit that is
separate from a main memory unit. The graphics memory

20

30

40

45

18

may be configured to hold the frame buffer, while the main
memory may be configured to hold data and programs imple-
mented by the CPU 560.

By way of further example, the video encoder 578 and/or
the streaming unit 580 may optionally be implemented as one
or more software programs which are configured to be stored
on one or more memory units 574 and executed by the one or
more processor units 572 of the streaming computing device
552. The encoder 578 and the streaming unit 580 may be
separate sets of code or may be part of the same program in
accordance with implementations of the present disclosure.

It is noted that the example depicted in FIG. 5 is a simpli-
fied schematic provided for purposes of explanation, but the
system 500 may include many additional aspects to support
graphics rendering, compression, streaming, and other fea-
tures in support of cloud computing. Moreover, configuration
of the illustrated example system 500 may be particularly
beneficial in implementations involving cloud gaming for
console platforms, and it is noted that the system 500 may be
configured in accordance with systems described in U.S.
application Ser. No. 14/135374, entitled “VIDEO
LATENCY REDUCTION” and fully incorporated by refer-
ence herein, to further support such applications.

For example, the graphics source system 550 of the present
application may have features in common with the terminal
system depicted in FIG. 4A of that document, which corre-
sponds to FIG. 6A herein. By way of further example, the
streaming server 552 may have features in common with the
streaming server depicted in FIG. 4B of that document (cor-
responding to FIG. 6B herein), and the frame capture unit 576
may have features in common with the video capture card
depicted in FIG. 5 of that document (corresponding to FIG. 7
herein).

FIGS. 6A and 6B provide an overview of an example
hardware/software architecture for generating and capturing
video frames according to various implementations of the
present disclosure. In particular, the example system of FIGS.
6A and 6B may be a system for streaming video games and
other applications using a streaming server and a terminal
system. FIG. 6A illustrates an architecture for an example
video source according to various aspects of the present dis-
closure, and FIG. 6B illustrates an architecture for an example
video capture system for capturing video from the video
source according to various implementations of the present
disclosure. In some implementations, the video source 612
may be a terminal configured to run an application for cloud
streaming, and may be an existing embedded system, video
game console, or other computing device having a specialized
architecture. In some implementations, the video capture sys-
tem 602 (video sink) may be a streaming server configured to
capture and stream the video output from the terminal system
to a client device. However, it is emphasized that the illus-
trated architecture of FIGS. 6A and 6B is provided by way of
example only, and that various implementations of the
present disclosure may involve reducing video transfer time
using other architectures and in other contexts beyond cloud
gaming and cloud computing applications.

Turning to FIG. 6A, the example video source may be a
terminal system 612 that is configured to run an application
608, which may involve a video output to be captured by the
video capture system 602. By way of example, and not by way
of limitation, the application may be a video game having
rendered graphics as a video output, which may be transferred
to the streaming server 602 for sending over the network. In
particular, the terminal system may include graphics process-
ing unit (GPU) 650, which together with the graphics
memory 649 may be configured to render the application

US 9,332,216 B2

19

output 608 as a sequence of images for video frames. The
images may be output as a sequence of video frames that have
visible pixels which contain the pixel data for the image of
each frame for display on a display device, and the video
frame images may be sent to the video capture system 602
through a video interface, such as HDMI, as output frames
having both visible and invisible pixels. However, in order to
reduce delay stemming from the video capture process, the
video source may be configured to add extra pixels so that
enlarged output frames are sent through the video interface.
Further examples of how extra pixels may be added to the
output frames are described below.

In order to support the output of the video signal, the video
source 612 may include a graphics driver 652 configured to
interface with the GPU 650 for rendering the application
video signal as a sequence of video frame images. In particu-
lar, the GPU 650 may generate video frame images for video
signal output in accordance with the application 608, and the
graphics driver 652 may coordinate with the GPU 650 to
render the video frame images into source video frame format
having a supported a particular display image resolution, e.g.,
720p. The GPU 650 together with the graphics driver 652
may render video frame images in a format having a plurality
of visible image lines, with each visible image line having a
plurality of visible image pixels. In certain implementations,
the graphics driver 652 may be configured to add extra pixels
in addition to the frame image pixels rendered by the GPU,
e.g., by rendering the frame in an enlarged frame having a
greater resolution than the number of pixels in the video
frame image. Further examples of enlarging a frame by ren-
dering it in an enlarged frame format are described below.

More specifically, the video source 612 may include a
frame buffer 651 and a scan out unit 653, which may be
operatively coupled to the GPU 650, and, in certain imple-
mentations, may be embodied in the GPU 650. The GPU 650
may be configured to render video images to the frame buffer
651, e.g., based on the output of the application 608, and the
scan out unit 653 may be configured to retrieve the frame
images from the frame buffer 651 and generate additional
external signals for sending the image as an output frame over
the interface, e.g., as described above.

In particular, the scan out unit 653 may include a pixel
clock generator 641 for generating a pixel clock signal the
scan out of the frame and/or a sync signal generator 631 for
generating the synchronization signals, e.g., hsync and vsync
signals, with each output frame. For example, the sync signal
generator 631 may add an hsync signal that has a horizontal
blanking region at the end of each line of the frame, and
corresponds to a plurality of invisible pixels at the end of each
line of the frame. The signal generator 631 may also add a
vsync signal that has a vertical blanking region at the end of
each frame and corresponds to a plurality of invisible lines at
the end of the frame. The pixel clock generator 641 may
generate a clock signal having a pulse associated with each
pixel in the output frame generated for transfer over the video
interface, including the total number of active pixels retrieved
from the frame buffer 651 and the total number of pixels
corresponding to the synchronization regions inserted
between the active pixels. It is noted that the pixel clock
generator 641 and/or the sync signal generator 631 may be
contained as part of the scan out unit 653, and the scan out unit
653 may be contained as part of the GPU 650. However, it is
emphasized that this is just an illustrative example, and that
one or more over the components may be implemented as
separate components.

The video source may include a video transmitter 656
coupled to a video communication interface, and the trans-

10

15

20

25

30

35

40

45

50

55

60

65

20

mitter may transfer the video signal to the video capture
system 602 through a serial communication interface, e.g.,
pixel by pixel in sequence, with the sync signals indicating
transitions between lines and frames in the sequence accord-
ingly. The a pixel clock generator 641 which may generate a
clock signal to synchronize the timing of each pixel, e.g.,
based on the total number of pixels and frame rate of the video
content, as discussed above. In certain implementations, the
pixel clock generator 641 may generate a pixel clock with
increase transfer frequency in each pixel, based on extra
pixels contained within the active display region within each
image, extra pixels contained within the synchronization
region, or both. Optionally, the video interface may also sup-
port audio transfer, such as with an HDMI interface, and an
audio signal output from the application may also be submit-
ted through the video interface. In alternative implementa-
tions, a separate audio interface may be used.

The video source may be configured to send the output
video signal to a video capture device 620 coupled to a com-
puting system 602. The capture device may receive the video
pixel data contained in the transferred video signal so that it
may be captured in digital form and compressed by the
streaming server 602. The streaming server 602 may include
avideo capture process 634 and/or an encoder which may be
configured to compress each video frame received from the
video capture device. A streaming server process 646 may be
configured to transmit the compressed video stream to a
remotely located device so that the compressed video stream
may be decompressed and displayed on a remote display
device.

In certain implementations, the video capture device may
contain video capture logic 628 which is specially configured
to capture only the visible pixels of a video frame image
contained within an enlarged frame in accordance with vari-
ous aspects of the present disclosure. For example, in certain
implementations, the graphics rendering components of the
video source may be configured to insert the visible image
pixels of a video frame image in only a portion of the active
display region of a particular format, and the video capture
device 620 may be configured to count lines and/or pixels
within each frame that is received in order to know when
capture of the display image is complete. This may be based
on a predetermined configuration of how frames are rendered
by the video source. Alternatively, the video capture device
620 may determine that capture is complete based on the
presence of a synchronization signal, e.g., a VSYNC signal in
implementations where frames are enlarged by adding syn-
chronization lines. The streaming server 602 or other com-
puting device may be configured to begin compression the
video frames as soon as capture of the visible display image
within each frame is complete.

The capture device may receive the video signal through
communication interface that is compatible with the video
signal output from the video source 612, and the video inter-
face may be coupled to a video receiver 630. By way of
example, and not by way of limitation, the video capture
device may include one or more ports as part of an audio
and/or video communication interface, e.g., HDMI ports or
other ports as described below with reference to FIG. 7.

The interface device 602 may include a specialized pro-
cessing unit containing the logic 628 that is operatively
coupled to the video signal interface, with the specialized
processing unit having logic 628 that is dedicated to perform-
ing functions associated with A/V capture, and optionally
other functions associated with cloud streaming, for signals
received through a connector from the terminal system 602.
The logic 628 may also support communication with the host

US 9,332,216 B2

21

system 602 through an additional communication interface,
which may communicate with a peripheral bus of the host
system 602 in order to interface with an A/V process embod-
ied in the host system. By way of example, and not by way of
limitation, the interface device 620 may be an add-on card
which communicates with the host system 602 memory/CPU
through an expansion interface, such as peripheral compo-
nent interconnect (PCI)), PCIl-eXtended (PCI-X), PCI-Ex-
press (PCle), or another interface which facilitates commu-
nication with the host system 602 e.g., via a peripheral bus.
The host system may include a capture device driver 626 to
support the exchange of signals via the interface device 620.

In certain implementations, the specialized processing unit
may be a field programmable gate array (FPGA), an applica-
tion specific integrated circuit (ASIC), or another specialized
processing unit having dedicated units of logic configured in
accordance with principles described herein. The logic units
628 of the specialized processing unit may also include dedi-
cated logic to support various functions for cloud streaming in
addition to audio/video capture of the output from an appli-
cation 608 running on the terminal system 602, such as stor-
age virtualization in coordination with a storage process 632.

In the example depicted in FIGS. 6 A-6B, an A/V capture
unit embodied in the logic 628 of the specialized processing
unit may communicate with the capture device driver 626 in
the host system 602, and an A/V process 632 embodied in the
host system 602, e.g., a software application running on a
central processing unit 604. For example if the terminal sys-
tem 612 sends video pixels to the video capture device, this
video data may make it through the graphics driver 652, the
video capture unit contained in the logic 628, the capture
device driver 626, to the A/V process 632 embodied in the
host system. The A/V process 632 may then compress the
captured video frames, and the compression may begin
sooner in accordance with an increase in the pixel clock
caused by extra pixels. In certain implementations, the video
sink 602 may optionally be a streaming server adapted to
transmit over a network a stream of video output from the
application 608 running on the terminal system 612. For
example, the streaming server 602 may include an Ethernet
adapter or other network adapter 636, and a corresponding
Ethernet driver or other network driver 638 for the operating
system of the host 602, with a compatible network library 639
providing protocol support for the network communication.
The host system may also include system memory 640, con-
trolled by a corresponding memory driver 642 (e.g., tmpfs)
and supported by a file system library 644. A streaming server
process 646 may be run on the host system 602 to perform
functions associated with provide a real time stream to a client
device connected over a network (not pictured in FIGS.
6A-6B).

The terminal system 612 may include various other com-
ponents to support the application 608, which may be, e.g.,
video game software designed for an existing embedded plat-
form. The terminal system 612 may include a file system layer
627 to access storage, as well various components to support
graphics storage access. In some implementations, systems
and the capture device 620 may be configured to implement a
storage virtualization technique. An example of such a tech-
nique is described in commonly-assigned, co-pending U.S.
application Ser. No. 13/135,213, to Roelof Roderick Colen-
brander, entitled “MASS STORAGE VIRTUALIZATION
FOR CLOUD COMPUTING”, filed Dec. 19, 2013, the entire
contents of which are herein incorporated by reference.

Turning now to FIG. 7, a schematic diagram of an example
capture device 720 that may be implemented on the interface
card 620, some components on it, and internals of an example

20

25

30

40

45

50

22

specialized processing unit 760 is depicted in accordance
with various implementations of the present disclosure. By
way of example, and not by way of limitation, the capture
device 720 may be configured as an add-on card having
components attached to a printed circuit board (PCB), and the
capture card 720 may interface with a peripheral bus of a host
system through a host hardware interface 762, such as a
peripheral expansion port or other expansion communication
interface which allows communication the peripheral bus of a
host system when connected. It is noted that the example
capture device 720 of FIG. 7 includes various optional com-
ponents that are not necessary for video capture, but which
may provide additional functionality for cloud computing
and other implementations.

The example specialized processing unit 760 may include
various blocks of logic dedicated to specialized functionality
in accordance with various aspects of the present disclosure.
The specialized processing unit may be implemented, e.g., as
an FPGA, ASIC, or similar specialized processing unit. The
specialized processing unit 760 may include a host interface
block 764 which implements part of a protocol stack for the
communication interface between the interface card 720 and
a peripheral bus of a host system (not pictured in FIG. 7) for
the capture device 760.

Communication busses like PCI-Express can be thought of
as a protocol stack having several layers. Different commu-
nication protocols have different layers. Typically there is an
‘application layer’ at the top, then some transport related
layers in the middle and some physical layer at the bottom.
The host interface block 764 need not implement all layers of
such a protocol stack. Instead, the host interface block may
take care of the physical layer, which is responsible for put-
ting digital information on a communication link, e.g.,
through electrical or optical signals. The host interface block
may also be responsible for portions or possibly all of the
‘transport layers’ of the protocol stack, but need not be
responsible for the application layer.

By way of example, and not by way of limitation, the host
interface block 764 may be a hard PCle block for communi-
cation through a PCI-Express connection, and which embeds
the protocol stack for a PCle interface or other interface for
accessing a local bus of the host system. The host interface
block 764 may be integrated into a memory access interface
unit 766 which, together with other logic units of the special-
ized processing unit 760, may directly access system memory
of'ahost system through the host hardware interface 762, e.g.,
using an interrupt of the request to the host system.

In some implementations, the memory access interface
766 may include components that provide memory access
and interrupt functionality. In particular, the host interface
block 764 may be configured to provide a connection between
an on-chip-interconnect 772 and the host hardware interface
762 in a way that makes any on-chip device accessible from
the host system using memory mapped Input/Output (1/0).
This functionality would allow the host system to program
any device connected to the on-chip-interconnect 772, such
as the mass storage controller 770, memory controller 776, or
GPIO 782.

The memory access interface 766 may also include an
interrupt connection 765 that allows any connected device,
e.g., the A/V capture units 778, to generate an interrupt upon
an event (e.g., a captured video frame image is complete). It
is desirable for the memory access interface to provide this
functionality if there can be only one device interfacing with
the host hardware interface hardware 762.

The memory access interface 766 may also (optionally)
include a direct memory access (DMA) engine 767. As used

US 9,332,216 B2

23

herein, and as is generally understood by those skilled in the
art, the term direct memory access (DMA) refers to a feature
that allows certain hardware subsystems within a computer to
access system memory independently of the computer’s cen-
tral processing unit (CPU). The DMA engine 767 may imple-
ment data move operations between the host interface block
764 and the host hardware interface 762. In some implemen-
tations, the memory access interface unit 766 may implement
portions of a protocol stack (e.g., PCI Express) not provided
by the host interface block 764, such as connecting the host
interface block 764 to the on-chip-interconnect 772.

For purposes of functionality for video capture, the capture
device 720 may include one or more video and optionally
audio/video communication interfaces 780, which may be
implemented in the form of one or more HDMI ports 771
and/or connectors, or other video signal communication
interfaces, and which may be attached to a circuit board of the
capture device 720. By way of example, and not by way of
limitation, the interface card 720 may contain two HDMI
ports to facilitate connection to two distinct video sources/
terminal systems, although it is noted that the capture device
may alternatively contain a different number of video con-
nectors so that a single capture device 720 may service a
different number of video sources or terminal systems. For
each of the video signal connectors 780, there may be a
corresponding video capture unit 778 embodied in the spe-
cialized processing unit 760 that is compatible with the par-
ticular video communication interface (e.g., HDMI, DV],
VGA, etc.).

The one or more video capture units 778 of the specialized
processing unit may be connected to other logic units of the
specialized processing unit 760 through the on-chip intercon-
nect 772, which may provide each of the video capture units
778 access to host system interface components (e.g., PCI-
Express). The on-chip interconnect may be configured to a
standard on-chip bus architecture configured to connect func-
tional blocks on a specialized processing unit (e.g., an FPGA
or ASIC). For example, if the specialized processing unit 760
is an FPGA, the components of the specialized processing
unit may be interconnected using master-slave architecture,
e.g., an Advanced Microcontroller Bus Architecture
(AMBA), such as AXI4 or AXI4-Lite, or another suitable
on-chip bus architecture. AXI4 may be used for large data
transport and AXI-Lite may be used for low performance
connections or for configuration purposes. The on-chip inter-
connections of the specialized processing unit logic blocks
may be configured according to a master-slave type configu-
ration as shown in FIG. 7. In the illustrated schematic, “M”
and the corresponding bold lines represent represents a mas-
ter connection, “S” and the corresponding dotted lines repre-
sent a slave connection, and “Ctrl” represents control.

The interface device 720 may include one or more memory
units 774 which may be controlled by a memory controller
776 provided in the logic of the specialized processing unit
760. The memory unit may support data transport between a
terminal system connected through the mass storage interface
768 and a host system connected through the host hardware
interface 762, in accordance with data requests issued by the
terminal system, e.g., for mass storage virtualization. For
example, the memory unit 774 may be a temporary RAM
unit, such as DDR3 RAM, or another volatile memory unit
configured to temporarily store data requested by read
requests issued by the terminal system, in accordance with
principles described herein. The memory controller 776 may
be connected to the on chip bus architecture 772 to perform

10

15

20

25

30

35

40

45

50

55

60

65

24

memory read/write operations according to signals received
from other logical units of the specialized processing unit
760.

During operation, a graphics driver and/or scanout unit of
avideo source (not pictured in FIG. 7) connected through the
video interface 780 may generate enlarged output video
frames having extra pixels to be captured by the capture card
720. Upon receiving the video output frames, the video cap-
ture unit(s) 778 may be configured to determine when each
frame’s visible display image pixels have been captured and
omit the extra pixels in each frame from capture, discarding
these extra pixels because they contain unneeded data. The
captured video data for each frame may be transmitted to a
video capture process in a host system using an interrupt
through the host hardware interface 762 for further process-
ing, compression, and/or transmission over a network. Com-
pression may begin sooner for a given frame rate because a
lower proportion of the pixels within each frame need to be
transmitted in order to transfer all of the visible image pixels
in the frame.

It is noted that each of the one or more A/V capture logic
units 778 may be operatively coupled to a corresponding A/V
receiver 730, each of which may in turn be connected to a
suitable A/V hardware interface 780, such as an HDMI port
771 or other A/V connection port as shown in FIG. 7. A/V
output from the terminal system may be connected to the A/V
receiver 730 through the A/V interface 780 using a compat-
ible A/V connector. The A/V capture unit 778 may commu-
nicate with the interface device driver and A/V process on the
host system through the host hardware interface 762, which
may be connected to ahost system bus (e.g., aperipheral bus),
and the host system may then deliver the A/V stream to a
client device over a network.

The interface device may optionally include various other
components which provide additional functionality for
streaming applications run on a terminal system, such as
cloud gaming streaming. For example, the specialized pro-
cessing unit 760 may also include one or more mass storage
device controllers 770 for emulating a storage device for one
or more terminal systems. The interface device 782 may also
include one or more general purpose input/output (GPIO)
blocks to support additional functionality. By way of
example, and not by way of limitation, each of the GPIO
blocks may be connected to a corresponding one of the ter-
minal system to provide additional functionality, such as
power control of the terminal systems and other functionality.

As noted above, the specialized processing unit 760 may be
implemented, e.g., as an FPGA, ASIC, or other integrated
circuit having blocks dedicated to certain functionality, such
as A/V capture, a mass storage device controller, memory
controller, DMA engine, and the like, in accordance with
various aspects of the present disclosure. In certain imple-
mentations of the present disclosure, one or more of these
units may be provided as reusable units of logic or other chip
design commonly referred to in the art as IP blocks or IP
cores.

CONCLUSION

While the above is a complete description of the preferred
embodiment of the present invention, it is possible to use
various alternatives, modifications and equivalents. There-
fore, the scope of the present invention should be determined
not with reference to the above description but should,
instead, be determined with reference to the appended claims,
along with their full scope of equivalents. Any feature
described herein, whether preferred or not, may be combined

US 9,332,216 B2

25

with any other feature described herein, whether preferred or
not. In the claims that follow, the indefinite article “a”, or “an”
refers to a quantity of one or more of the item following the
article, except where expressly stated otherwise. The
appended claims are not to be interpreted as including means-
or step-plus-function limitations, unless such a limitation is
explicitly recited in a given claim using the phrase “means

23

for!

What is claimed is:

1. A method comprising:

rendering a plurality of source frames into a buffer, each
said source frame being rendered sequentially into the
buffer at a variable frame rate;

scanning out a plurality of output frames from the buffer
with a scanout unit, each said output frame being
scanned out sequentially with a vertical blanking inter-
val at the end of each said output frame;

compressing a source frame within each said output frame
that is scanned out of the buffer;

detecting one or more fluctuations in the variable frame
rate; and

adjusting a timing of the compressing of one or more of the
source frames in response to the one or more fluctua-
tions.

2. The method of claim 1,

wherein said adjusting the timing of the compressing
includes adjusting a timing of one or more of the output
frames of said scanning out by modifying the vertical
blanking interval in response to the one or more fluctua-
tions.

3. The method of claim 1, further comprising:

capturing the source frame within each said output frame
that is scanned out of the buffer before said compressing
the source frame.

4. The method of claim 1, further comprising:

capturing the source frame within each said output frame
that is scanned out of the buffer before said compressing
the source frame; and

sending each said compressed frame to one or more remote
devices over a network.

5. The method of claim 1,

wherein the buffer includes a front frame buffer and at least
one back frame buffer,

wherein each said output frame is scanned out of the front
frame buffer,

wherein the back frame buffer is swapped with the front
frame buffer after scan out of each said output frame
from the front frame buffer.

6. The method of claim 1,

wherein the one or more fluctuations include one or more
downward fluctuations in which the variable frame rate
decreases,

wherein said adjusting the timing of the compressing
includes delaying a scan out of one or more of the output
frames in response to the downward fluctuations.

7. The method of claim 1,

wherein the one or more fluctuations include one or more
downward fluctuations in which the variable frame rate
decreases,

wherein said adjusting the timing of the compressing
includes delaying a scan out of one or more of the output
frames in response to the downward fluctuations,

wherein said delaying the scan out includes adjusting the
vertical blanking interval to by extending a length of the
vertical blanking interval between two subsequent
frames.

10

20

25

30

35

40

45

50

55

60

65

26
8. The method of claim 1,
wherein the one or more fluctuations include one or more
downward fluctuations in which the variable frame rate
decreases,
wherein said adjusting the timing of the compressing
includes delaying a scan out of one or more of the output
frames in response to the downward fluctuations,
wherein said delaying the scan out includes adjusting the
vertical blanking interval to by extending a length of the
vertical blanking interval between two subsequent
frames,
wherein said extending the length of the vertical blanking
interval includes putting the scanout unit to sleep for a
period of time.
9. The method of claim 1, further comprising:
placing a marker into a memory unit after each said frame
is rendered into the frame buffer,
wherein said detecting the one or more fluctuations
includes tracking a time at which the marker for each
said frame is placed into the buffer.
10. The method of claim 1,
wherein said adjusting the timing of the compressing
includes extending the length of the vertical blanking
interval by putting the scanout unit to sleep for a period
of time.
11. The method of claim 1,
wherein said adjusting the timing of the compressing
includes delaying scanout of at least one of the output
frames by changing a register value to a value that delays
scanout.
12. The method of claim 1,
wherein the one or more fluctuations include one or more
downward fluctuations in which the variable frame rate
decreases,
wherein said adjusting the timing of the compressing
includes disabling a display interface in response to the
one or more downward fluctuations to prevent transfer
of one or more of the output frames.
13. A system comprising:
at least one processor unit;
at least one memory unit coupled to the processor unit; and
a scanout unit coupled to the processor unit, wherein the
processor unit is configured to perform a method, the
method comprising:
rendering a plurality of source frames into a buffer, each
said source frame being rendered sequentially into the
buffer at a variable frame rate;
scanning out a plurality of output frames from the buffer
with a scanout unit, each said output frame being
scanned out sequentially with a vertical blanking
interval at the end of each said output frame;
compressing a source frame within each said output
frame that is scanned out of the buffer;
detecting one or more fluctuations in the variable frame
rate; and
adjusting a timing of the compressing of one or more of
the source frames in response to the one or more
fluctuations.
14. The system of claim 13,
wherein said adjusting the timing of the compressing
includes adjusting a timing of one or more of the output
frames of said scanning out by modifying the vertical
blanking interval in response to the one or more fluctua-
tions.

US 9,332,216 B2

27
15. The system of claim 13, wherein the method further
comprises:
capturing the source frame within each said output frame
that is scanned out of the buffer before said compressing
the source frame.
16. The system of claim 13, wherein the method further
comprises:
capturing the source frame within each said output frame
that is scanned out of the buffer before said compressing
the source frame; and
sending each said compressed frame to one or more remote
devices over a network.
17. The system of claim 13,
wherein the buffer includes a front frame buffer and at least
one back frame buffer,
wherein each said output frame is scanned out of the front
frame buffer,
wherein the back frame buffer is swapped with the front
frame buffer after scan out of each said output frame
from the front frame buffer.
18. The system of claim 13,
wherein the one or more fluctuations include one or more
downward fluctuations in which the variable frame rate
decreases,
wherein said adjusting the timing of the compressing
includes delaying a scan out of one or more of the output
frames in response to the downward fluctuations.
19. The system of claim 13,
wherein the one or more fluctuations include one or more
downward fluctuations in which the variable frame rate
decreases,
wherein said adjusting the timing of the compressing
includes delaying a scan out of one or more of the output
frames in response to the downward fluctuations,
wherein said delaying the scan out includes adjusting the
vertical blanking interval to by extending a length of the
vertical blanking interval between two subsequent
frames.
20. The system of claim 13,
wherein the one or more fluctuations include one or more
downward fluctuations in which the variable frame rate
decreases,
wherein said adjusting the timing of the compressing
includes delaying a scan out of one or more of the output
frames in response to the downward fluctuations,
wherein said delaying the scan out includes adjusting the
vertical blanking interval to by extending a length of the
vertical blanking interval between two subsequent
frames,
wherein said extending the length of the vertical blanking
interval includes putting the scanout unit to sleep for a
period of time.
21. The system of claim 13, wherein the method further
comprises:
placing a marker into a memory unit after each said frame
is rendered into the frame buffer,
wherein said detecting the one or more fluctuations
includes tracking a time at which the marker for each
said frame is placed into the buffer.
22. The system of claim 13,
wherein said adjusting the timing of the compressing
includes extending the length of the vertical blanking
interval by putting the scanout unit to sleep for a period
of time.

10

20

25

30

40

45

50

60

28

23. The system of claim 13,

wherein said adjusting the timing of the compressing
includes delaying scanout of at least one of the output
frames by changing a register value to a value that delays
scanout.

24. The system of claim 13,

wherein the one or more fluctuations include one or more

downward fluctuations in which the variable frame rate
decreases,

wherein said adjusting the timing of the compressing

includes disabling a display interface in response to the
one or more downward fluctuations to prevent transfer
of one or more of the output frames.

25. A non-transitory computer readable medium having
processor-executable instructions embodied therein, wherein
execution of the instructions by a processor causes the pro-
cessor to implement a method, the method comprising

rendering a plurality of source frames into a bufter, each

said source frame being rendered sequentially into the
buffer at a variable frame rate;

scanning out a plurality of output frames from the buffer

with a scanout unit, each said output frame being
scanned out sequentially with a vertical blanking inter-
val at the end of each said output frame;

compressing a source frame within each said output frame

that is scanned out of the buffer;

detecting one or more fluctuations in the variable frame

rate; and

adjusting a timing of the compressing of one or more of the

source frames in response to the one or more fluctua-
tions.

26. The non-transitory computer readable medium of claim
25,

wherein said adjusting the timing of the compressing

includes adjusting a timing of one or more of the output
frames of said scanning out by modifying the blanking
interval in response to the one or more fluctuations.

27. The non-transitory computer readable medium of claim
25,

wherein the one or more fluctuations include one or more

downward fluctuations in which the variable frame rate
decreases,

wherein said adjusting the timing of the compressing

includes delaying a scan out of one or more of the output
frames in response to the downward fluctuations.

28. The non-transitory computer readable medium of claim
25,

wherein the one or more fluctuations include one or more

downward fluctuations in which the variable frame rate
decreases,
wherein said adjusting the timing of the compressing
includes delaying a scan out of one or more of the output
frames in response to the downward fluctuations,

wherein said delaying the scan out includes adjusting the
vertical blanking interval to by extending a length of the
vertical blanking interval between two subsequent
frames.

29. The non-transitory computer readable medium of claim
25,

wherein the one or more fluctuations include one or more

downward fluctuations in which the variable frame rate
decreases,

wherein said adjusting the timing of the compressing

includes delaying a scan out of one or more of the output
frames in response to the downward fluctuations,

US 9,332,216 B2
29

wherein said delaying the scan out includes adjusting the
vertical blanking interval to by extending a length of the
vertical blanking interval between two subsequent
frames,

wherein said extending the length of the vertical blanking 5
interval includes putting the scanout unit to sleep for a
period of time.

30

